
1

Using Python and
Jupyter on
Perlmutter

Perlmutter New User Training, 2022 L. Stephey, D. Margala, R. Thomas
Jan 7, 2022

2

Python/Jupyter users, welcome to Perlmutter!

•General Python advice
•Using Python on GPUs
•Using Jupyter on Perlmutter
•Open Q&A (5 mins at end)

What we’ll cover in this short 30 mins

Python on Perlmutter

4

What should I know moving from Cori to
Perlmutter?
•More unified Python module + Jupyter configuration 👏

o Jupyter Python 3 kernel is based on Python default module, currently
python/3.9-anaconda-2021.11

o Python and Jupyter Python 3 Kernel share $PYTHONUSERBASE, which
determines location and search path of pip installed packages

•Many “best practices” remain
o Use our /global/common/software/<your project> filesystem

for better performance
o Use custom conda environments for customizable Python sandboxes,

can be easily converted into a Jupyter kernel
o Use a Shifter container, can be easily converted into a Jupyter kernel

•6000+ GPUs!

5

More systems, more problems! How to avoid
common problems:
•Cori and Perlmutter are two very different systems that are still
sharing filesystems, including $HOME and dotfiles (.bashrc,
.bash_profile, etc.)

•Don’t put system-specific modifications in your dotfiles
o Actually, put as little in your dotfiles as you can and make sure to

periodically review their contents
•Most likely code/environments you have built for Cori will not work on
Perlmutter, and vice-versa. mpi4py will not work across systems.

•Tip– append system name to your custom conda environments, like
dask-cori and dask-pm to help you keep track

•Be more careful using pip (we’ll cover this)

6

Use environments with conda activate
•You can now use conda activate on Perlmutter without using
conda init and it will not make changes to your .bashrc

•This is already possible on Perlmutter and will change on Cori at the
AY rollover on Jan 19

Old 😓

New 👌

module load python
source activate myenv
conda deactivate

or

module load python
conda init
conda activate myenv
conda deactivate

module load python
conda activate myenv
conda deactivate

The current default python module is
python/3.9-anaconda-2021.11

Check out our pending updates to the Python
docs for more information

https://gitlab.com/NERSC/nersc.gitlab.io/-/merge_requests/1665
https://gitlab.com/NERSC/nersc.gitlab.io/-/merge_requests/1665

7

Building and using mpi4py
•mpi4py is available via module load python
•This mpi4py is CUDA-aware (can communicate GPU objects)
•To build your own CUDA-aware mpi4py, follow this recipe:

module load PrgEnv-gnu cudatoolkit python
conda create -n cudaaware python=3.9 -y
conda activate cudaaware
MPICC="cc -target-accel=nvidia80 -shared" pip
install --force --no-cache-dir --no-binary=mpi4py
mpi4py

•Be aware that with any CUDA-aware mpi4py, you must have
cudatoolkit loaded, even for code that does not use the GPU

8

Use pip with caution ⚠
• Be careful with pip!!!! pip will try to be clever and find existing

packages to save time, but most likely you don’t want this
• Best practices for pip

o Use it inside of a conda environment, not outside (don’t use --user)
o Always pip install <package> --force (Did you notice this in our

mpi4py recipe?)
o This will force a rebuild, which is important if tries to reuse a package

from Cori
• If you use pip --user, it will install packages to the location

specified by PYTHONUSERBASE, which is by default
$HOME/.local/perlmutter/3.9-anaconda-2021.11

• It is safe to delete this directory if you want to clean up/save space

Python on GPUs

10

Getting started with GPUs in Python
• NumPy and SciPy do not utilize GPUs out of the box

• There are many Python GPU frameworks out there:
o “drop in” replacements for numpy, scipy, pandas, scikit-learn, etc

o CuPy, RAPIDS, cuNumeric (coming soon?)
o “machine learning” libraries that also support general GPU

computing
o PyTorch, TensorFlow

o “I want to write my own GPU kernels”
o Numba, PyOpenCL, PyCUDA

• Many of these GPU libraries have adopted the CUDA Array
Interface which makes it easier to share array-like objects
stored in GPU memory between the libraries

• There is also some effort in the community to standardize
around a common Python array API

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://data-apis.org/array-api/latest/

11

Getting started with GPUs in Python (CuPy)

Numpy features support by CuPy:

● Basic indexing (indexing by ints, slices, newaxes, and Ellipsis)
● Most of Advanced indexing (except for some indexing patterns with boolean masks)
● Data types (dtypes): bool_, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64,

complex64, complex128
● Most of the array creation routines (empty, ones_like, diag, etc.)
● Most of the array manipulation routines (reshape, rollaxis, concatenate, etc.)
● All operators with broadcasting
● All universal functions for elementwise operations (except those for complex numbers)
● Linear algebra functions, including product (dot, matmul, etc.) and decomposition (cholesky, svd, etc.),

accelerated by cuBLAS and cuSOLVER
● Multi-dimensional fast Fourier transform (FFT), accelerated by cuFFT
● Reduction along axes (sum, max, argmax, etc.)

https://numpy.org/doc/stable/reference/arrays.indexing.html
https://numpy.org/doc/stable/reference/arrays.indexing.html#advanced-indexing
https://numpy.org/doc/stable/reference/routines.array-creation.html
https://numpy.org/doc/stable/reference/routines.array-manipulation.html
https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/reference/ufuncs.html
https://numpy.org/doc/stable/reference/routines.linalg.html
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusolver
https://numpy.org/doc/stable/reference/routines.fft.html
https://developer.nvidia.com/cufft

12

Getting started with GPUs in Python (CuPy)

> ssh perlmutter

> module load cudatoolkit python

> conda create -y --name cupy-demo python=3.9 numpy scipy

> source activate cupy-demo

> pip install cupy-cuda114

> python

>>> import cupy as cp

>>> print(cp.array([1, 2, 3]))

[1 2 3]

See documentation at https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
or open a ticket at https://help.nersc.gov/

Version should match the CUDA version from
the cudatoolkit module

Current default version is: cudatoolkit/21.9_11.4

https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
https://help.nersc.gov/

13

Getting started with GPUs in Python (CuPy)

>>> import numpy as np
>>> import cupy as cp

Create an array on GPU/device

>>> x_gpu = cp.array([1, 2, 3])

>>> isinstance(x_gpu, cp.ndarray)

True

Data Transfer

>>> x_cpu = np.array([1, 2, 3]) # create an array on CPU/host

>>> x_gpu = cp.asarray(x_cpu) # move the data to the GPU/device

>>> x_gpu = cp.array([1, 2, 3]) # create an array in the GPU/device

>>> x_cpu = cp.asnumpy(x_gpu) # move the array to the CPU/host

CPU / Host GPU / Device

x_cpu x_gpu

In general, it is a good idea to minimize
data movement between Host and Device

14

Advanced GPU programming in Python
import cupy
import numba.cuda
import numpy

CUDA kernel
@numba.cuda.jit
def _cuda_addone(x):
 i = numba.cuda.grid(1)
 if i < x.size:
 x[i] += 1

convenience wrapper with thread/block configuration
def addone(x):
 # threads per block
 tpb = 32
 # blocks per grid
 bpg = (x.size + (tpb - 1)) // tpb
 _cuda_addone[bpg, tpb](x)

create array on device using cupy
x = cupy.zeros(1000)

pass cupy ndarray to numba.cuda kernel
addone(x)

Use numpy api with cupy ndarray
total = numpy.sum(x)

https://docs.cupy.dev/en/stable/user_guide/basic.html
https://numba.readthedocs.io/en/stable/cuda/index.html

○ NumPy’s __array_function__ protocol (NEP 18)
■ numpy.sum(x) -> cupy.sum(x)

○ CPU and GPU execution paths can share same
implementation (sometimes)

○ Can also use helper functions to get the appropriate
array module. For example:
■ xp = cupy.get_array_module(x)

https://docs.cupy.dev/en/stable/user_guide/basic.html
https://numba.readthedocs.io/en/stable/cuda/index.html
https://numpy.org/neps/nep-0018-array-function-protocol.html

15

Profiling using NVIDIA Nsight Systems
import cupy as cp

cp.cuda.nvtx.RangePush(message)
…
cp.cuda.nvtx.RangePop()

@cp.prof.TimeRangeDecorator(message)
def function():

pass

with cp.prof.time_range(message):
pass

Can also use with-statement
context blocks

Or use decorator syntax
without modifying function
body

CuPy supports for NVIDIA Tools
Extension (NVTX) markers and ranges

> nsys profile --trace cuda,nvtx --stats=true python myapp.py

Run your application with Nsight Systems:

16

Is my code a good fit for a GPU?

GPUs are likely a good fit if the following are true
for your application:
● Performs computation using large arrays,

matrices, or images
● Dataset can fit in GPU memory

○ (40GB for Perlmutter’s A100 GPUs)
● IO is not a bottleneck

For more help choosing a GPU-accelerated Python
framework:
https://docs.nersc.gov/development/languages/python/perl
mutter-prep/
or open a ticket at https://help.nersc.gov/

a = xp.random.rand(size, size)

b = xp.random.rand(size, size)

def f(a, b):

 return xp.dot(a, b)

CPUs → low latency
GPUs → high throughput

https://docs.nersc.gov/development/languages/python/perlmutter-prep/
https://docs.nersc.gov/development/languages/python/perlmutter-prep/
https://help.nersc.gov/

Jupyter on Perlmutter

18

How do I run Jupyter notebooks on Perlmutter Phase I?
Making sure you can access Perlmutter with Jupyter

Available configurations and what they are for

How do I make use of Perlmutter GPUs from Jupyter?
Hardware you can use for each configuration

Monitoring GPU usage in JupyterLab

What should I know moving from Cori to Perlmutter?
What differences in the deployment matter to you

19

How do I run Jupyter notebooks on Perlmutter Phase I?
Making sure you can access Perlmutter with Jupyter

https://jupyter.nersc.gov

Log In

https://jupyter.nersc.gov/hub/home (home or “console”)

If this row does not show up, you need Perlmutter
to be added to your list of “server logins” in Iris.

Note: Your console may look a little different if
you don’t have Cori GPU access for instance

20

How do I run Jupyter notebooks on Perlmutter Phase I?
Available configurations and what they are for

Notebooks on a shared login node
Will not be charged
No CPU/GPU/memory limits yet
Debug/test/develop
Not as compute intensive

Whole compute node to yourself
Will be charged to sensible default
6 hour time limit
Interactive GPU work
Compute intensive

Up to 4 nodes, up to 6 hours
Customize your Slurm allocation
Interactive GPU work
You need to scale, baby!
… need more? Contact me!

21

How do I make use of Perlmutter GPUs from Jupyter?
Hardware you can use for each configuration

Login Node
1 “shared” NVIDIA A100
Kind of free-for-all for now, future:
NVIDIA Multi Instance GPU (MIG)?

1 Compute Node
4 NVIDIA A100’s

4 Compute Nodes
16 NVIDIA A100’s
Limits may change per demand

22

How do I make use of Perlmutter GPUs from Jupyter?
Monitoring GPU usage in JupyterLabNotebook: !nvidia-smi

Terminal: nvidia-smi

NVDashboard
LabExtension

Monitor GPUs on the node
(Compute or login node)

For multi-node jobs, only GPUs on
the same node as the notebook

23

How do I make use of Perlmutter GPUs from Jupyter?
Monitoring GPU usage in JupyterLab

Dask Dashboard

dask-labextension needed a “fix” for us to deploy
Just merged so it’s coming soon…!

Monitor everything
Watch progress
Profile your workflow
Separate tab for now
(Demo on 100 GPUs)

Like Dask?
Want to try Dask?

Example notebook with dashboard setup instructions:
https://gitlab.com/NERSC/nersc-notebooks/-/tree/master/dask

https://docs.google.com/file/d/1Zn1-qmUHZG4JOGUw4J5isrTFEpezAnZB/preview

24

What should I know moving from Cori to Perlmutter?
What differences in the deployment matter to you

Cori Perlmutter

Shared Node Notebooks 24 login nodes total
4 dedicated to Jupyter
No other usages allowed
CPU/memory limits in place

40 login nodes total
Jupyter not restricted to a subset
Runs alongside ssh-based logins
No resource limits in place yet

Exclusive Node Notebooks Limited resources available
Requires access to special QOS
Kind of fussy setup

Jupyter jobs are first class
No plans for special QOS
Watching allocation success rate
Will make adjustments to queues

Configurable Notebooks Limited to GPU partition

Setting up Kernels Conda envs, custom, helpers:
See NERSC Jupyter docs

Same deal as on Cori
Your conda envs may be bigger!

https://docs.nersc.gov/services/jupyter/

Wrap Up

26

Where to get Python/Jupyter information, help
• Have a question? Try our

documentation (updated almost daily!)
o Using Perlmutter
o Python at NERSC
o Python on Perlmutter
o Jupyter at NERSC
o Try the search bar at docs.nersc.gov, it’s

pretty good!
• Can’t find the answer? Submit a ticket

at help.nersc.gov

https://docs.nersc.gov/systems/perlmutter/
https://docs.nersc.gov/development/languages/python/nersc-python/
https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
https://docs.nersc.gov/services/jupyter/
https://docs.nersc.gov/
https://nersc.servicenowservices.com/sp/

27

Summary

• Welcome to Perlmutter!
• We are here to help you use Python and

Jupyter productively on Perlmutter
• If you have questions, please check our

docs.nersc.gov or file a ticket at
help.nersc.gov

• Don’t be shy– now is the time to ask us
questions!

https://docs.nersc.gov/
https://nersc.servicenowservices.com/sp/

